Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Lancet Microbe ; 2(4): e159-e167, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-34355208

RESUMO

BACKGROUND: Although antibiotic prophylaxis with levofloxacin can reduce the risk of serious infection in immunocompromised patients, the potential contribution of prophylaxis to antibiotic resistance is a major drawback. We aimed to identify the effects of levofloxacin prophylaxis, given to paediatric patients with acute lymphoblastic leukaemia to prevent infections during induction chemotherapy, on antibiotic resistance in gastrointestinal microbiota after completion of induction and consolidation therapy. METHODS: This prospective, single-centre (St Jude Children's Research Hospital, Memphis, TN, USA) cohort study included children (≤18 years) receiving therapy for newly diagnosed acute lymphoblastic leukaemia and who received either primary levofloxacin prophylaxis or no antibacterial prophylaxis (aside from Pneumocystis jirovecii prophylaxis with trimethoprim-sulfamethoxazole) and provided at least two stool samples, including one after completion of induction therapy. We used metagenomic sequencing to identify bacterial genes that confer resistance to fluoroquinolones, trimethoprim-sulfamethoxazole, or other antibiotics, and to identify point mutations in bacterial topoisomerases (gyrA, parC) that confer resistance to fluoroquinolones. We then used generalised linear mixed models to compare the prevalence and relative abundance of antibiotic resistance gene groups after completion of induction and consolidation therapy between participants who had received levofloxacin and those who received no prophylaxis. FINDINGS: Between Feb 1, 2012, and April 30, 2016, 118 stool samples (32 baseline, 49 after induction, and 37 after consolidation) were collected from 49 evaluable participants; of these participants, 31 (63%) received levofloxacin prophylaxis during induction therapy and 18 (37%) received no antibacterial prophylaxis. Over the course of induction therapy, there was an overall increase in the relative abundance of trimethoprim-sulfamethoxazole resistance genes (estimated mean fold change 5·9, 95% CI 3·6-9·6; p<0·0001), which was not modified by levofloxacin prophylaxis (p=0·46). By contrast, the prevalence of topoisomerase point mutations increased over the course of induction therapy in levofloxacin recipients (mean prevalence 10·4% [95% CI 3·2-25·4] after induction therapy vs 3·7% [0·2-22·5] at baseline) but not other participants (0% vs 0%; p<0·0001). There was no significant difference between prophylaxis groups with respect to changes in aminoglycoside, ß-lactam, vancomycin, or multidrug resistance genes after completion of induction or consolidation therapy. INTERPRETATION: Analysing the gastrointestinal resistome can provide insights into the effects of antibiotics on the risk of antibiotic-resistant infections. In this study, antibiotic prophylaxis with trimethoprim-sulfamethoxazole or levofloxacin during induction therapy for acute lymphoblastic leukaemia appeared to increase the short-term and medium-term risk of colonisation with bacteria resistant to these antibiotics, but not to other drugs. More research is needed to determine the longer-term effects of antibacterial prophylaxis on colonisation with antibiotic-resistant bacteria. FUNDING: Children's Infection Defense Center at St Jude Children's Research Hospital, American Lebanese Syrian Associated Charities, and National Institutes of Health.


Assuntos
Antibioticoprofilaxia , Leucemia-Linfoma Linfoblástico de Células Precursoras , Antibacterianos/uso terapêutico , Criança , Estudos de Coortes , Fluoroquinolonas/uso terapêutico , Humanos , Levofloxacino/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Estudos Prospectivos , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico
2.
Br J Clin Pharmacol ; 87(3): 806-815, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32978831

RESUMO

AIMS: Beta-blockers are commonly used to treat hypertension that arises during pregnancy. However, reproductive safety concerns have been expressed. Here, we investigated whether the use of ß-blockers during early pregnancy increased the risk of congenital malformations. METHODS: A systematic literature search was performed in PubMed, Embase and Cochrane Library to identify relevant studies published from database inception until February 2020. Observational studies evaluating associations between maternal ß-blocker use and congenital malformations were included in this meta-analysis. Two reviewers independently extracted data and assessed study quality. Meta-analysis of outcomes was performed and a summary odds ratio (OR) was calculated with consideration of heterogeneity. RESULTS: Twenty observational studies were identified. Beta-blocker use during early pregnancy was not associated with an increased risk of congenital malformations (OR = 1.01, 95% confidence interval [CI] = 0.93-1.09). Subgroup analysis of organ-specific malformations revealed that ß-blocker use was associated with an increased risk of heart malformations (OR = 1.29, 95% CI = 1.02-1.63) and an increased risk of cleft lip or palate (OR = 1.5, 95% CI = 1.18-1.91); however, these associations (OR = 1.11, 95% CI = 0.94-1.32 for heart malformations; OR = 1.34, 95% CI = 0.98-1.85 for cleft lip or palate) disappeared when the adjusted data were pooled. Beta-blocker use was not associated with increased risks of central nervous system malformations, neural tube defects or hypospadias. CONCLUSION: Exposure to ß-blockers during early pregnancy does not appear to be associated with congenital malformations or heart malformations in offspring. Other organ-specific congenital malformations should be evaluated in further studies.


Assuntos
Cardiopatias Congênitas , Hipertensão , Antagonistas Adrenérgicos beta/efeitos adversos , Feminino , Cardiopatias Congênitas/induzido quimicamente , Cardiopatias Congênitas/epidemiologia , Humanos , Masculino , Estudos Observacionais como Assunto , Razão de Chances , Gravidez
3.
Emerg Infect Dis ; 26(12): 2887-2898, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33219648

RESUMO

Since their discovery in the United States in 1963, outbreaks of infection with equine influenza virus (H3N8) have been associated with serious respiratory disease in horses worldwide. Genomic analysis suggests that equine H3 viruses are of an avian lineage, likely originating in wild birds. Equine-like internal genes have been identified in avian influenza viruses isolated from wild birds in the Southern Cone of South America. However, an equine-like H3 hemagglutinin has not been identified. We isolated 6 distinct H3 viruses from wild birds in Chile that have hemagglutinin, nucleoprotein, nonstructural protein 1, and polymerase acidic genes with high nucleotide homology to the 1963 H3N8 equine influenza virus lineage. Despite the nucleotide similarity, viruses from Chile were antigenically more closely related to avian viruses and transmitted effectively in chickens, suggesting adaptation to the avian host. These studies provide the initial demonstration that equine-like H3 hemagglutinin continues to circulate in a wild bird reservoir.


Assuntos
Vírus da Influenza A Subtipo H3N8 , Influenza Aviária , Animais , Galinhas , Chile/epidemiologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Cavalos , Vírus da Influenza A Subtipo H3N8/genética , Influenza Aviária/epidemiologia , Filogenia
4.
mBio ; 11(3)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430471

RESUMO

Staphylococcus aureus utilizes the fatty acid (FA) kinase system to activate exogenous FAs for membrane synthesis. We developed a lipidomics workflow to determine the membrane phosphatidylglycerol (PG) molecular species synthesized by S. aureus at the thigh infection site. Wild-type S. aureus utilizes both host palmitate and oleate to acylate the 1 position of PG, and the 2 position is occupied by pentadecanoic acid arising from de novo biosynthesis. Inactivation of FakB2 eliminates the ability to assimilate oleate and inactivation of FakB1 reduces the content of saturated FAs and enhances oleate utilization. Elimination of FA activation in either ΔfakA or ΔfakB1 ΔfakB2 mutants does not impact growth. All S. aureus strains recovered from the thigh have significantly reduced branched-chain FAs and increased even-chain FAs compared to that with growth in rich laboratory medium. The molecular species pattern observed in the thigh was reproduced in the laboratory by growth in isoleucine-deficient medium containing exogenous FAs. S. aureus utilizes specific host FAs for membrane biosynthesis but also requires de novo FA biosynthesis initiated by isoleucine (or leucine) to produce pentadecanoic acid.IMPORTANCE The shortage of antibiotics against drug-resistant Staphylococcus aureus has led to the development of new drugs targeting the elongation cycle of fatty acid (FA) synthesis that are progressing toward the clinic. An objection to the use of FA synthesis inhibitors is that S. aureus can utilize exogenous FAs to construct its membrane, suggesting that the bacterium would bypass these therapeutics by utilizing host FAs instead. We developed a mass spectrometry workflow to determine the composition of the S. aureus membrane at the infection site to directly address how S. aureus uses host FAs. S. aureus strains that cannot acquire host FAs are as effective in establishing an infection as the wild type, but strains that require the utilization of host FAs for growth were attenuated in the mouse thigh infection model. We find that S. aureus does utilize host FAs to construct its membrane, but host FAs do not replace the requirement for pentadecanoic acid, a branched-chain FA derived from isoleucine (or leucine) that predominantly occupies the 2 position of S. aureus phospholipids. The membrane phospholipid structure of S. aureus mutants that cannot utilize host FAs indicates the isoleucine is a scarce resource at the infection site. This reliance on the de novo synthesis of predominantly pentadecanoic acid that cannot be obtained from the host is one reason why drugs that target fatty acid synthesis are effective in treating S. aureus infections.


Assuntos
Ácidos Graxos/metabolismo , Interações entre Hospedeiro e Microrganismos , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Animais , Meios de Cultura/química , Ácidos Graxos/biossíntese , Feminino , Isoleucina/química , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Ácido Oleico/metabolismo , Fosfatidilgliceróis/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/crescimento & desenvolvimento , Coxa da Perna/microbiologia
5.
J Biol Chem ; 295(22): 7635-7652, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32317282

RESUMO

Enoyl-acyl carrier protein reductase (FabI) catalyzes a rate-controlling step in bacterial fatty-acid synthesis and is a target for antibacterial drug development. A phylogenetic analysis shows that FabIs fall into four divergent clades. Members of clades 1-3 have been structurally and biochemically characterized, but the fourth clade, found in members of phylum Bacteroidetes, is uncharacterized. Here, we identified the unique structure and conformational changes that distinguish clade 4 FabIs. Alistipes finegoldii is a prototypical Bacteroidetes inhabitant of the gut microbiome. We found that A. finegoldii FabI (AfFabI) displays cooperative kinetics and uses NADH as a cofactor, and its crystal structure at 1.72 Å resolution showed that it adopts a Rossmann fold as do other characterized FabIs. It also disclosed a carboxyl-terminal extension that forms a helix-helix interaction that links the protomers as a unique feature of AfFabI. An AfFabI·NADH crystal structure at 1.86 Å resolution revealed that this feature undergoes a large conformational change to participate in covering the NADH-binding pocket and establishing the water channels that connect the active site to the central water well. Progressive deletion of these interactions led to catalytically compromised proteins that fail to bind NADH. This unique conformational change imparted a distinct shape to the AfFabI active site that renders it refractory to a FabI drug that targets clade 1 and 3 pathogens. We conclude that the clade 4 FabI, found in the Bacteroidetes inhabitants of the gut, have several structural features and conformational transitions that distinguish them from other bacterial FabIs.


Assuntos
Proteínas de Bactérias/química , Bacteroidetes/enzimologia , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/química , Microbioma Gastrointestinal , NAD/química , Sítios de Ligação , Cristalografia por Raios X , Humanos
6.
mBio ; 11(2)2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32127459

RESUMO

Obesity is associated with increased disease severity, elevated viral titers in exhaled breath, and significantly prolonged viral shed during influenza A virus infection. Due to the mutable nature of RNA viruses, we questioned whether obesity could also influence influenza virus population diversity. Here, we show that minor variants rapidly emerge in obese mice. The variants exhibit increased viral replication, resulting in enhanced virulence in wild-type mice. The increased diversity of the viral population correlated with decreased type I interferon responses, and treatment of obese mice with recombinant interferon reduced viral diversity, suggesting that the delayed antiviral response exhibited in obesity permits the emergence of a more virulent influenza virus population. This is not unique to obese mice. Obesity-derived normal human bronchial epithelial (NHBE) cells also showed decreased interferon responses and increased viral replication, suggesting that viral diversity also was impacted in this increasing population.IMPORTANCE Currently, 50% of the adult population worldwide is overweight or obese. In these studies, we demonstrate that obesity not only enhances the severity of influenza infection but also impacts viral diversity. The altered microenvironment associated with obesity supports a more diverse viral quasispecies and affords the emergence of potentially pathogenic variants capable of inducing greater disease severity in lean hosts. This is likely due to the impaired interferon response, which is seen in both obese mice and obesity-derived human bronchial epithelial cells, suggesting that obesity, aside from its impact on influenza virus pathogenesis, permits the stochastic accumulation of potentially pathogenic viral variants, raising concerns about its public health impact as the prevalence of obesity continues to rise.


Assuntos
Suscetibilidade a Doenças , Vírus da Influenza A/fisiologia , Influenza Humana/etiologia , Obesidade/complicações , Animais , Interações Hospedeiro-Patógeno , Humanos , Influenza Humana/metabolismo , Camundongos , Mutação , Fenótipo , RNA Viral , Mucosa Respiratória/metabolismo , Mucosa Respiratória/virologia , Índice de Gravidade de Doença , Virulência , Replicação Viral
7.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165663, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31918006

RESUMO

Pantothenate kinase (PanK) is the first enzyme in the coenzyme A (CoA) biosynthetic pathway. The differential expression of the four-active mammalian PanK isoforms regulates CoA levels in different tissues and PANK2 mutations lead to Pantothenate Kinase Associated Neurodegeneration (PKAN). The molecular mechanisms that potentially underlie PKAN pathophysiology are investigated in a mouse model of CoA deficiency in the central nervous system (CNS). Both PanK1 and PanK2 contribute to brain CoA levels in mice and so a mouse model with a systemic deletion of Pank1 together with neuronal deletion of Pank2 was generated. Neuronal Pank2 expression in double knockout mice decreased starting at P9-11 triggering a significant brain CoA deficiency. The depressed brain CoA in the mice correlates with abnormal forelimb flexing and weakness that, in turn, contributes to reduced locomotion and abnormal gait. Biochemical analysis reveals a reduction in short-chain acyl-CoAs, including acetyl-CoA and succinyl-CoA. Comparative gene expression analysis reveals that the CoA deficiency in brain is associated with a large elevation of Hif3a transcript expression and significant reduction of gene transcripts in heme and hemoglobin synthesis. Reduction of brain heme levels is associated with the CoA deficiency. The data suggest a response to oxygen/glucose deprivation and indicate a disruption of oxidative metabolism arising from a CoA deficiency in the CNS.


Assuntos
Química Encefálica/genética , Encéfalo/patologia , Coenzima A/deficiência , Neurodegeneração Associada a Pantotenato-Quinase/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/deficiência , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Encéfalo/citologia , Coenzima A/análise , Coenzima A/biossíntese , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Heme/análise , Heme/metabolismo , Hemoglobinas/análise , Hemoglobinas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Neurônios/patologia , Oxirredução , Neurodegeneração Associada a Pantotenato-Quinase/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Repressoras/metabolismo
8.
ACS Infect Dis ; 6(3): 467-478, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31887254

RESUMO

Increasing rates of drug-resistant Gram-negative (GN) infections, combined with a lack of new GN-effective antibiotic classes, are driving the need for the discovery of new agents. Bacterial metabolism represents an underutilized mechanism of action in current antimicrobial therapies. Therefore, we sought to identify novel antimetabolites that disrupt key metabolic pathways and explore the specific impacts of these agents on bacterial metabolism. This study describes the successful application of this approach to discover a new series of chemical probes, N-(phenyl)thioacetamide-linked 1,2,3-triazoles (TAT), that target cysteine synthase A (CysK), an enzyme unique to bacteria that is positioned at a key juncture between several fundamental pathways. The TAT class was identified using a high-throughput screen against Escherichia coli designed to identify modulators of pathways related to folate biosynthesis. TAT analog synthesis demonstrated a clear structure-activity relationship, and activity was confirmed against GN antifolate-resistant clinical isolates. Spontaneous TAT resistance mutations were tracked to CysK, and mode of action studies led to the identification of a false product formation mechanism between the CysK substrate O-acetyl-l-serine and the TATs. Global transcriptional responses to TAT treatment revealed that these antimetabolites impose substantial disruption of key metabolic networks beyond cysteine biosynthesis. This study highlights the potential of antimetabolite drug discovery as a promising approach to the discovery of novel GN antibiotics and the pharmacological promise of TAT CysK probes.


Assuntos
Cisteína Sintase/antagonistas & inibidores , Cisteína/biossíntese , Escherichia coli/efeitos dos fármacos , Tioacetamida/farmacologia , Triazóis/farmacologia , Antibacterianos/farmacologia , Antimetabólitos/farmacologia , Descoberta de Drogas , Escherichia coli/enzimologia , Ensaios de Triagem em Larga Escala , Redes e Vias Metabólicas/efeitos dos fármacos , Tioacetamida/química , Triazóis/química
9.
Mol Microbiol ; 113(4): 807-825, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31876062

RESUMO

Members of the Bacteroidetes phylum, represented by Alistipes finegoldii, are prominent anerobic, Gram-negative inhabitants of the gut microbiome. The lipid biosynthetic pathways were analyzed using bioinformatic analyses, lipidomics, metabolic labeling and biochemistry to characterize exogenous fatty acid metabolism. A. finegoldii only produced the saturated fatty acids. The most abundant lipids were phosphatidylethanolamine (PE) and sulfonolipid (SL). Neither phosphatidylglycerol nor cardiolipin are present. PE synthesis is initiated by the PlsX/PlsY/PlsC pathway, whereas the SL pathway is related to sphingolipid biosynthesis. A. finegoldii incorporated medium-chain fatty acids (≤14 carbons) into PE and SL after their elongation, whereas long-chain fatty acids (≥16 carbons) were not elongated. Fatty acids >16 carbons were primarily incorporated into the 2-position of phosphatidylethanolamine at the PlsC step, the only biosynthetic enzyme that utilizes long-chain acyl-ACP. The ability to assimilate a broad-spectrum of fatty acid chain lengths present in the gut environment is due to the expression of two acyl-acyl carrier protein (ACP) synthetases. Acyl-ACP synthetase 1 had a substrate preference for medium-chain fatty acids and synthetase 2 had a substrate preference for long-chain fatty acids. This unique combination of synthetases allows A. finegoldii to utilize both the medium- and long-chain fatty acid nutrients available in the gut environment to assemble its membrane lipids.


Assuntos
Bacteroidetes/metabolismo , Ácidos Graxos/metabolismo , Microbioma Gastrointestinal , Proteína de Transporte de Acila/metabolismo , Proteínas de Bactérias/metabolismo , Carbono-Enxofre Ligases/metabolismo , Humanos , Lipídeos/biossíntese , Fosfatidiletanolaminas/biossíntese
10.
mBio ; 10(4)2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31387906

RESUMO

During infection, bacteria use two-component signal transduction systems to sense and adapt to the dynamic host environment. Despite critically contributing to infection, the activating signals of most of these regulators remain unknown. This also applies to the Staphylococcus aureus ArlRS two-component system, which contributes to virulence by coordinating the production of toxins, adhesins, and a metabolic response that enables the bacterium to overcome host-imposed manganese starvation. Restricting the availability of essential transition metals, a strategy known as nutritional immunity, constitutes a critical defense against infection. In this work, expression analysis revealed that manganese starvation imposed by the immune effector calprotectin or by the absence of glycolytic substrates activates ArlRS. Manganese starvation imposed by calprotectin also activated the ArlRS system even when glycolytic substrates were present. A combination of metabolomics, mutational analysis, and metabolic feeding experiments revealed that ArlRS is activated by alterations in metabolic flux occurring in the latter half of the glycolytic pathway. Moreover, calprotectin was found to induce expression of staphylococcal leukocidins in an ArlRS-dependent manner. These studies indicated that ArlRS is a metabolic sensor that allows S. aureus to integrate multiple environmental stresses that alter glycolytic flux to coordinate an antihost response and to adapt to manganese starvation. They also established that the latter half of glycolysis represents a checkpoint to monitor metabolic state in S. aureus Altogether, these findings contribute to understanding how invading pathogens, such as S. aureus, adapt to the host during infection and suggest the existence of similar mechanisms in other bacterial species.IMPORTANCE Two-component regulatory systems enable bacteria to adapt to changes in their environment during infection by altering gene expression and coordinating antihost responses. Despite the critical role of two-component systems in bacterial survival and pathogenesis, the activating signals for most of these regulators remain unidentified. This is exemplified by ArlRS, a Staphylococcus aureus global regulator that contributes to virulence and to resisting host-mediated restriction of essential nutrients, such as manganese. In this report, we demonstrate that manganese starvation and the absence of glycolytic substrates activate ArlRS. Further investigations revealed that ArlRS is activated when the latter half of glycolysis is disrupted, suggesting that S. aureus monitors flux through the second half of this pathway. Host-imposed manganese starvation also induced the expression of pore-forming toxins in an ArlRS-dependent manner. Cumulatively, this work reveals that ArlRS acts as a sensor that links nutritional status, cellular metabolism, and virulence regulation.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Quinases/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Glicólise , Humanos , Complexo Antígeno L1 Leucocitário , Manganês/metabolismo , Proteínas Quinases/genética , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Virulência
11.
J Virol ; 93(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30971471

RESUMO

Human astroviruses are single-stranded RNA enteric viruses that cause a spectrum of disease ranging from asymptomatic infection to systemic extragastrointestinal spread; however, they are among the least-characterized enteric viruses, and there is a lack of a well-characterized small animal model. Finding that immunocompromised mice were resistant to human astrovirus infection via multiple routes of inoculation, our studies aimed to determine whether murine astrovirus (MuAstV) could be used to model human astrovirus disease. We experimentally infected wild-type mice with MuAstV isolated from immunocompromised mice and found that the virus was detected throughout the gastrointestinal tract, including the stomach, but was not associated with diarrhea. The virus was also detected in the lung. Although virus levels were higher in recently weaned mice, the levels were similar in male and female adult mice. Using two distinct viruses isolated from different immunocompromised mouse strains, we observed virus strain-specific differences in the duration of infection (3 versus 10 weeks) in wild-type mice, indicating that the within-host immune pressure from donor mice shaped the virus kinetics in immunocompetent recipient hosts. Both virus strains elicited minimal pathology and a lack of sustained immunity. In summary, MuAstV represents a useful model for studying asymptomatic human infection and gaining insight into the astrovirus pathogenesis and immunity.IMPORTANCE Astroviruses are widespread in both birds and mammals; however, little is known about the pathogenesis and the immune response to the virus due to the lack of a well-characterized small-animal model. Here we describe two distinct strains of murine astrovirus that cause infections in immunocompetent mice that mirror aspects of asymptomatic human infections, including minimal pathology and short-lived immunity. However, we noted that the duration of infection differed greatly between the strains, highlighting an important facet of these viruses that was not previously appreciated. The ubiquitous nature and diversity of murine astroviruses coupled with the continuous likelihood of reinfection raise the possibility of viral interference with other mouse models of disease.


Assuntos
Infecções por Astroviridae/imunologia , Infecções por Astroviridae/virologia , Astroviridae/isolamento & purificação , Astroviridae/patogenicidade , Hospedeiro Imunocomprometido/imunologia , Fatores Etários , Animais , Astroviridae/classificação , Infecções por Astroviridae/patologia , Diarreia/virologia , Modelos Animais de Doenças , Feminino , Trato Gastrointestinal/patologia , Trato Gastrointestinal/virologia , Imunidade , Intestino Delgado/patologia , Intestino Delgado/virologia , Masculino , Mamastrovirus , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , Receptor de Interferon alfa e beta/genética , Fatores Sexuais , Baço/virologia , Replicação Viral
12.
Protein Sci ; 28(6): 1031-1047, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30927326

RESUMO

Pantothenate kinase generates 4'-phosphopantothenate in the first and rate-determining step of coenzyme A (CoA) biosynthesis. The human genome encodes three well-characterized and nearly identical pantothenate kinases (PANK1-3) plus a putative bifunctional protein (PANK4) with a predicted amino-terminal pantothenate kinase domain fused to a carboxy-terminal phosphatase domain. Structural and phylogenetic analyses show that all active, characterized PANKs contain the key catalytic residues Glu138 and Arg207 (HsPANK3 numbering). However, all amniote PANK4s, including human PANK4, encode Glu138Val and Arg207Trp substitutions which are predicted to inactivate kinase activity. Biochemical analysis corroborates bioinformatic predictions-human PANK4 lacks pantothenate kinase activity. Introducing Glu138Val and Arg207Trp substitutions to the human PANK3 and plant PANK4 abolished their robust pantothenate kinase activity. Introducing both catalytic residues back into human PANK4 restored kinase activity, but only to a low level. This result suggests that epistatic changes to the rest of the protein already reduced the kinase activity prior to mutation of the catalytic residues in the course of evolution. The PANK4 from frog, an anamniote living relative encoding the catalytically active residues, had only a low level of kinase activity, supporting the view that HsPANK4 had reduced kinase activity prior to the catalytic residue substitutions in amniotes. Together, our data show that human PANK4 is a pseudo-pantothenate kinase-a catalytically deficient variant of the catalytically active PANK4 found in plants and fungi. The Glu138Val and Arg207Trp substitutions in amniotes (HsPANK3 numbering) completely deactivated the pantothenate kinase activity that had already been reduced by prior epistatic mutations.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Sequência de Aminoácidos , Biocatálise , Humanos , Modelos Moleculares , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Alinhamento de Sequência
13.
Front Microbiol ; 9: 2291, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319589

RESUMO

Chlamydia trachomatis is an obligate intracellular pathogen with a reduced genome reflecting its host cell dependent life style. However, C. trachomatis has retained all of the genes required for fatty acid and phospholipid synthesis that are present in free-living bacteria. C. trachomatis assembles its cellular membrane using its own biosynthetic machinery utilizing glucose, isoleucine, and serine. This pathway produces disaturated phospholipid molecular species containing a branched-chain 15-carbon fatty acid in the 2-position, which are distinct from the structures of host phospholipids. The enoyl reductase step (FabI) is a target for antimicrobial drug discovery, and the developmental candidate, AFN-1252, blocks the activity of CtFabI. The x-ray crystal structure of the CtFabI•NADH•AFN-1252 ternary complex reveals the interactions between the drug, protein, and cofactor. AFN-1252 treatment of C. trachomatis-infected HeLa cells at any point in the infection cycle reduces infectious titers, and treatment at the time of infection prevents the first cell division. Fatty acid synthesis is essential for C. trachomatis proliferation within its eukaryotic host, and CtFabI is a validated therapeutic target against C. trachomatis.

14.
Nat Struct Mol Biol ; 24(8): 666-671, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28714993

RESUMO

Phosphatidic acid (PA), the central intermediate in membrane phospholipid synthesis, is generated by two acyltransferases in a pathway conserved in all life forms. The second step in this pathway is catalyzed by 1-acyl-sn-glycerol-3-phosphate acyltransferase, called PlsC in bacteria. Here we present the crystal structure of PlsC from Thermotoga maritima, revealing an unusual hydrophobic/aromatic N-terminal two-helix motif linked to an acyltransferase αß-domain that contains the catalytic HX4D motif. PlsC dictates the acyl chain composition of the 2-position of phospholipids, and the acyl chain selectivity 'ruler' is an appropriately placed and closed hydrophobic tunnel. We confirmed this by site-directed mutagenesis and membrane composition analysis of Escherichia coli cells that expressed mutant PlsC. Molecular dynamics (MD) simulations showed that the two-helix motif represents a novel substructure that firmly anchors the protein to one leaflet of the membrane. This binding mode allows the PlsC active site to acylate lysophospholipids within the membrane bilayer by using soluble acyl donors.


Assuntos
Aciltransferases/química , Aciltransferases/metabolismo , Motivos de Aminoácidos , Bicamadas Lipídicas , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Thermotoga maritima/enzimologia , Aciltransferases/genética , Catálise , Domínio Catalítico , Membrana Celular/enzimologia , Cristalografia por Raios X , Análise Mutacional de DNA , Proteínas de Membrana/genética , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica em alfa-Hélice
15.
Biochimie ; 141: 30-39, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28668270

RESUMO

Bacterial type II fatty acid synthesis (FASII) is a target for novel antibiotic development. All bacteria encode for mechanisms to incorporate exogenous fatty acids, and some bacteria can use exogenous fatty acids to bypass FASII inhibition. Bacteria encode three different mechanisms for activating exogenous fatty acids for incorporation into phospholipid synthesis. Exogenous fatty acids are converted into acyl-CoA in Gammaproteobacteria such as E. coli. Acyl-CoA molecules constitute a separate pool from endogenously synthesized acyl-ACP. Acyl-CoA can be used for phospholipid synthesis or broken down by ß-oxidation, but cannot be used for lipopolysaccharide synthesis. Exogenous fatty acids are converted into acyl-ACP in some Gram-negative bacteria. The resulting acyl-ACP undergoes the same fates as endogenously synthesized acyl-ACP. Exogenous fatty acids are converted into acyl-phosphates in Gram-positive bacteria, and can be used for phospholipid synthesis or become acyl-ACP. Only the order Lactobacillales can use exogenous fatty acids to bypass FASII inhibition. FASII shuts down completely in presence of exogenous fatty acids in Lactobacillales, allowing Lactobacillales to synthesize phospholipids entirely from exogenous fatty acids. Inhibition of FASII cannot be bypassed in other bacteria because FASII is only partially down-regulated in presence of exogenous fatty acid or FASII is required to synthesize essential metabolites such as ß-hydroxyacyl-ACP. Certain selective pressures such as FASII inhibition or growth in biofilms can select for naturally occurring one step mutations that attenuate endogenous fatty acid synthesis. Although attempts have been made to estimate the natural prevalence of these mutants, culture-independent metagenomic methods would provide a better estimate.


Assuntos
Escherichia coli/metabolismo , Ácidos Graxos/metabolismo , Lactobacillales/metabolismo , Escherichia coli/genética , Lactobacillales/genética
16.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(11): 1300-1309, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27668701

RESUMO

Bacterial fatty acid synthesis is essential for many pathogens and different from the mammalian counterpart. These features make bacterial fatty acid synthesis a desirable target for antibiotic discovery. The structural divergence of the conserved enzymes and the presence of different isozymes catalyzing the same reactions in the pathway make bacterial fatty acid synthesis a narrow spectrum target rather than the traditional broad spectrum target. Furthermore, bacterial fatty acid synthesis inhibitors are single-targeting, rather than multi-targeting like traditional monotherapeutic, broad-spectrum antibiotics. The single-targeting nature of bacterial fatty acid synthesis inhibitors makes overcoming fast-developing, target-based resistance a necessary consideration for antibiotic development. Target-based resistance can be overcome through multi-targeting inhibitors, a cocktail of single-targeting inhibitors, or by making the single targeting inhibitor sufficiently high affinity through a pathogen selective approach such that target-based mutants are still susceptible to therapeutic concentrations of drug. Many of the pathogens requiring new antibiotic treatment options encode for essential bacterial fatty acid synthesis enzymes. This review will evaluate the most promising targets in bacterial fatty acid metabolism for antibiotic therapeutics development and review the potential and challenges in advancing each of these targets to the clinic and circumventing target-based resistance. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Descoberta de Drogas/métodos , Inibidores Enzimáticos/farmacologia , Ácidos Graxos/biossíntese , Lipogênese/efeitos dos fármacos , Animais , Antibacterianos/química , Bactérias/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Inibidores Enzimáticos/química , Ácidos Graxos/química , Humanos , Modelos Moleculares , Terapia de Alvo Molecular , Conformação Proteica , Relação Estrutura-Atividade
17.
Infect Immun ; 84(12): 3597-3607, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27736774

RESUMO

Enoyl-acyl carrier protein reductase catalyzes the last step in each elongation cycle of type II bacterial fatty acid synthesis and is a key regulatory protein in bacterial fatty acid synthesis. Genes of the facultative intracellular pathogen Listeria monocytogenes encode two functional enoyl-acyl carrier protein isoforms based on their ability to complement the temperature-sensitive growth phenotype of Escherichia coli strain JP1111 [fabI(Ts)]. The FabI isoform was inactivated by the FabI selective inhibitor AFN-1252, but the FabK isoform was not affected by the drug, as expected. Inhibition of FabI by AFN-1252 decreased endogenous fatty acid synthesis by 80% and lowered the growth rate of L. monocytogenes in laboratory medium. Robust exogenous fatty acid incorporation was not detected in L. monocytogenes unless the pathway was partially inactivated by AFN-1252 treatment. However, supplementation with exogenous fatty acids did not restore normal growth in the presence of AFN-1252. FabI inactivation prevented the intracellular growth of L. monocytogenes, showing that neither FabK nor the incorporation of host cellular fatty acids was sufficient to support the intracellular growth of L. monocytogenes Our results show that FabI is the primary enoyl-acyl carrier protein reductase of type II bacterial fatty acid synthesis and is essential for the intracellular growth of L. monocytogenes.


Assuntos
Proteínas de Bactérias/metabolismo , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Listeria monocytogenes/fisiologia , Proteínas de Bactérias/genética , Benzofuranos/farmacologia , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica , Genoma Bacteriano , Células HeLa , Humanos , Isoformas de Proteínas , Pironas/farmacologia
18.
J Biol Chem ; 291(42): 22302-22314, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27555321

RESUMO

Pantothenate kinase is the master regulator of CoA biosynthesis and is feedback-inhibited by acetyl-CoA. Comparison of the human PANK3·acetyl-CoA complex to the structures of PANK3 in four catalytically relevant complexes, 5'-adenylyl-ß,γ-imidodiphosphate (AMPPNP)·Mg2+, AMPPNP·Mg2+·pantothenate, ADP·Mg2+·phosphopantothenate, and AMP phosphoramidate (AMPPN)·Mg2+, revealed a large conformational change in the dimeric enzyme. The amino-terminal nucleotide binding domain rotates to close the active site, and this allows the P-loop to engage ATP and facilitates required substrate/product interactions at the active site. Biochemical analyses showed that the transition between the inactive and active conformations, as assessed by the binding of either ATP·Mg2+ or acyl-CoA to PANK3, is highly cooperative indicating that both protomers move in concert. PANK3(G19V) cannot bind ATP, and biochemical analyses of an engineered PANK3/PANK3(G19V) heterodimer confirmed that the two active sites are functionally coupled. The communication between the two protomers is mediated by an α-helix that interacts with the ATP-binding site at its amino terminus and with the substrate/inhibitor-binding site of the opposite protomer at its carboxyl terminus. The two α-helices within the dimer together with the bound ligands create a ring that stabilizes the assembly in either the active closed conformation or the inactive open conformation. Thus, both active sites of the dimeric mammalian pantothenate kinases coordinately switch between the on and off states in response to intracellular concentrations of ATP and its key negative regulators, acetyl(acyl)-CoA.


Assuntos
Acil Coenzima A/química , Mutação de Sentido Incorreto , Fosfotransferases (Aceptor do Grupo Álcool)/química , Acil Coenzima A/metabolismo , Regulação Alostérica , Substituição de Aminoácidos , Humanos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Domínios Proteicos , Estrutura Secundária de Proteína
19.
Antimicrob Agents Chemother ; 60(7): 4264-73, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27161626

RESUMO

Broad-spectrum antibiotic therapy decimates the gut microbiome, resulting in a variety of negative health consequences. Debio 1452 is a staphylococcus-selective enoyl-acyl carrier protein reductase (FabI) inhibitor under clinical development and was used to determine whether treatment with pathogen-selective antibiotics would minimize disturbance to the microbiome. The effect of oral Debio 1452 on the microbiota of mice was compared to the effects of four commonly used broad-spectrum oral antibiotics. During the 10 days of oral Debio 1452 treatment, there was minimal disturbance to the gut bacterial abundance and composition, with only the unclassified S24-7 taxon reduced at days 6 and 10. In comparison, broad-spectrum oral antibiotics caused ∼100- to 4,000-fold decreases in gut bacterial abundance and severely altered the microbial composition. The gut bacterial abundance and composition of Debio 1452-treated mice were indistinguishable from those of untreated mice 2 days after the antibiotic treatment was stopped. In contrast, the bacterial abundance in broad-spectrum-antibiotic-treated mice took up to 7 days to recover, and the gut composition of the broad-spectrum-antibiotic-treated mice remained different from that of the control group 20 days after the cessation of antibiotic treatment. These results illustrate that a pathogen-selective approach to antibiotic development will minimize disturbance to the gut microbiome.


Assuntos
Antibacterianos/farmacologia , Animais , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Microbiota/genética , RNA Ribossômico 16S/genética
20.
Cold Spring Harb Perspect Med ; 6(3): a027045, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26931811

RESUMO

Missense mutations leading to clinical antibiotic resistance are a liability of single-target inhibitors. The enoyl-acyl carrier protein reductase (FabI) inhibitors have one intracellular protein target and drug resistance is increased by the acquisition of single-base-pair mutations that alter drug binding. The spectrum of resistance mechanisms to FabI inhibitors suggests criteria that should be considered during the development of single-target antibiotics that would minimize the impact of missense mutations on their clinical usefulness. These criteria include high-affinity, fast on/off kinetics, few drug contacts with residue side chains, and no toxicity. These stringent criteria are achievable by structure-guided design, but this approach will only yield pathogen-specific drugs. Single-step acquisition of resistance may limit the clinical application of broad-spectrum, single-target antibiotics, but appropriately designed pathogen-specific antibiotics have the potential to overcome this liability.


Assuntos
Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/antagonistas & inibidores , Mutação de Sentido Incorreto , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...